12345678910111213141516171819202122232425262728293031323334353637383940414243444546 |
- """
- Given a list of integers, made up of (hopefully) a small number of long runs
- of consecutive integers, compute a representation of the form
- ((start1, end1), (start2, end2) ...). Then answer the question "was x present
- in the original list?" in time O(log(# runs)).
- """
-
- import bisect
-
- def intranges_from_list(list_):
- """Represent a list of integers as a sequence of ranges:
- ((start_0, end_0), (start_1, end_1), ...), such that the original
- integers are exactly those x such that start_i <= x < end_i for some i.
- """
-
- sorted_list = sorted(list_)
- ranges = []
- last_write = -1
- for i in range(len(sorted_list)):
- if i+1 < len(sorted_list):
- if sorted_list[i] == sorted_list[i+1]-1:
- continue
- current_range = sorted_list[last_write+1:i+1]
- range_tuple = (current_range[0], current_range[-1] + 1)
- ranges.append(range_tuple)
- last_write = i
-
- return tuple(ranges)
-
-
- def intranges_contain(int_, ranges):
- """Determine if `int_` falls into one of the ranges in `ranges`."""
- tuple_ = (int_, int_)
- pos = bisect.bisect_left(ranges, tuple_)
- # we could be immediately ahead of a tuple (start, end)
- # with start < int_ <= end
- if pos > 0:
- left, right = ranges[pos-1]
- if left <= int_ < right:
- return True
- # or we could be immediately behind a tuple (int_, end)
- if pos < len(ranges):
- left, _ = ranges[pos]
- if left == int_:
- return True
- return False
|