123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120 |
- ######################## BEGIN LICENSE BLOCK ########################
- # The Original Code is Mozilla Universal charset detector code.
- #
- # The Initial Developer of the Original Code is
- # Netscape Communications Corporation.
- # Portions created by the Initial Developer are Copyright (C) 2001
- # the Initial Developer. All Rights Reserved.
- #
- # Contributor(s):
- # Mark Pilgrim - port to Python
- # Shy Shalom - original C code
- #
- # This library is free software; you can redistribute it and/or
- # modify it under the terms of the GNU Lesser General Public
- # License as published by the Free Software Foundation; either
- # version 2.1 of the License, or (at your option) any later version.
- #
- # This library is distributed in the hope that it will be useful,
- # but WITHOUT ANY WARRANTY; without even the implied warranty of
- # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
- # Lesser General Public License for more details.
- #
- # You should have received a copy of the GNU Lesser General Public
- # License along with this library; if not, write to the Free Software
- # Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA
- # 02110-1301 USA
- ######################### END LICENSE BLOCK #########################
-
- import sys
- from . import constants
- from .charsetprober import CharSetProber
- from .compat import wrap_ord
-
- SAMPLE_SIZE = 64
- SB_ENOUGH_REL_THRESHOLD = 1024
- POSITIVE_SHORTCUT_THRESHOLD = 0.95
- NEGATIVE_SHORTCUT_THRESHOLD = 0.05
- SYMBOL_CAT_ORDER = 250
- NUMBER_OF_SEQ_CAT = 4
- POSITIVE_CAT = NUMBER_OF_SEQ_CAT - 1
- #NEGATIVE_CAT = 0
-
-
- class SingleByteCharSetProber(CharSetProber):
- def __init__(self, model, reversed=False, nameProber=None):
- CharSetProber.__init__(self)
- self._mModel = model
- # TRUE if we need to reverse every pair in the model lookup
- self._mReversed = reversed
- # Optional auxiliary prober for name decision
- self._mNameProber = nameProber
- self.reset()
-
- def reset(self):
- CharSetProber.reset(self)
- # char order of last character
- self._mLastOrder = 255
- self._mSeqCounters = [0] * NUMBER_OF_SEQ_CAT
- self._mTotalSeqs = 0
- self._mTotalChar = 0
- # characters that fall in our sampling range
- self._mFreqChar = 0
-
- def get_charset_name(self):
- if self._mNameProber:
- return self._mNameProber.get_charset_name()
- else:
- return self._mModel['charsetName']
-
- def feed(self, aBuf):
- if not self._mModel['keepEnglishLetter']:
- aBuf = self.filter_without_english_letters(aBuf)
- aLen = len(aBuf)
- if not aLen:
- return self.get_state()
- for c in aBuf:
- order = self._mModel['charToOrderMap'][wrap_ord(c)]
- if order < SYMBOL_CAT_ORDER:
- self._mTotalChar += 1
- if order < SAMPLE_SIZE:
- self._mFreqChar += 1
- if self._mLastOrder < SAMPLE_SIZE:
- self._mTotalSeqs += 1
- if not self._mReversed:
- i = (self._mLastOrder * SAMPLE_SIZE) + order
- model = self._mModel['precedenceMatrix'][i]
- else: # reverse the order of the letters in the lookup
- i = (order * SAMPLE_SIZE) + self._mLastOrder
- model = self._mModel['precedenceMatrix'][i]
- self._mSeqCounters[model] += 1
- self._mLastOrder = order
-
- if self.get_state() == constants.eDetecting:
- if self._mTotalSeqs > SB_ENOUGH_REL_THRESHOLD:
- cf = self.get_confidence()
- if cf > POSITIVE_SHORTCUT_THRESHOLD:
- if constants._debug:
- sys.stderr.write('%s confidence = %s, we have a'
- 'winner\n' %
- (self._mModel['charsetName'], cf))
- self._mState = constants.eFoundIt
- elif cf < NEGATIVE_SHORTCUT_THRESHOLD:
- if constants._debug:
- sys.stderr.write('%s confidence = %s, below negative'
- 'shortcut threshhold %s\n' %
- (self._mModel['charsetName'], cf,
- NEGATIVE_SHORTCUT_THRESHOLD))
- self._mState = constants.eNotMe
-
- return self.get_state()
-
- def get_confidence(self):
- r = 0.01
- if self._mTotalSeqs > 0:
- r = ((1.0 * self._mSeqCounters[POSITIVE_CAT]) / self._mTotalSeqs
- / self._mModel['mTypicalPositiveRatio'])
- r = r * self._mFreqChar / self._mTotalChar
- if r >= 1.0:
- r = 0.99
- return r
|